GenomeTools: a comprehensive software library
for efficient processing of structured genome
annotations

Gordon Gremme, Sascha Steinbiss and Stefan Kurtz
Center for Bioinformatics, University of Hamburg

kurtz@zbh.uni-hamburg.de

Abstract: Annotations of genomic features and their subcompo-
nents can be conveniently and intuitively described by annotation
graphs, a representation also serving as the basis for common text
formats like GFF3. However, current bioinformatics toolkits do
not make use of the full expressiveness of such a representation.
We present the GenomeTools, an efficient software library allowing
for convenient development of new software tools which create or
process (e.g. augment) annotation graphs. The GenomeTools API
is modeled around the annotation graph concept, making it easy
to access the information contained in the annotation and to de-
sign graph-based algorithms based on them. The object-oriented
GenomeTools library is optimized to keep a small memory footprint
for large annotation sets (such as variation annotations like SN'Vs)
by careful data structure design and by implementing an efficient
pull-based approach for sequential processing of annotations. It also
provides bindings to a variety of script programming languages (like
Python, Lua and Ruby) sharing a common programming interface.

1 Introduction

Genomic annotations connect raw sequence information to the associated
structural and functional properties, such as gene location, gene struc-
ture, and transcript variety. In the scope of bioinformatics software, they
can act as both output or input. For instance, in a gene prediction tool,
the locations of each detected gene, transcript, and their exons are typical
annotation output. Moreover, repeat instances like transposon insertions,
tRNA genes, and even regulatory regions like transcription factor binding
sites are common constituents of genomic annotations output by specific
bioinformatic software tools. As input, annotations are important — for
example when integrated with experimental data — as the basis for hypoth-
esis generation aided by software tools (e.g. custom genome browsers). In
some cases, the more fine-grained structure of the genomic features’ com-



##gff-version 3

##sequence-region chrl 1 1497228
chrl . gene 1000 9000 . + . ID=genel;Name=EDEN
chrl . TF binding site 1000 1012 . + . Parent=genel
chrl . mRNA 1050 9000 . + . ID=mRNA1;Parent=genel
chrl . mRNA 1050 9000 . . ID=mRNA2;Parent=genel
chrl . exon 1050 1500 . . Parent=mRNA1,mRNA2
chrl . mRNA 1300 9000 . . ID=mRNA3;Parent=genel
chrl . exon 1300 1500 . + . Parent=mRNA3
chrl . exon 3000 3902 . . Parent=mRNA1,mRNA3
chrl . exon 5000 5500 . . Parent=mRNA1,mRNA2,mRNA3

chrl . exon 7000 9000 . . Parent=mRNA1,mRNA2,mRNA3 exon exon exon exon exon
i 1050-1500 1300-1500 3000-3902 5000-5500 7000-9000

(a) (b)

+ o+ o+ o+ o+

Figure 1: (a) Part of a GFF3 file describing a gene with three possible alterna-
tively spliced transcripts. (b) Corresponding annotation graph consisting of a
single connected component.

ponents is important as well, for example when utilizing information about
gene and transcript structure to perform a census of alternative splicing
events [ELMT05]).

To establish a standard model for structured genomic annotations, Eil-
beck et al. [ELM™05] introduced the concept of annotation graphs as a
generic representation of genomic annotations for prokaryotic and eukary-
otic genomes. Annotation graphs are directed acyclic graphs (DAGs) in
which nodes represent genomic features and edges represent part-of re-
lationships between them. Nodes are typed according to the Sequence
Ontology (SO), a standardized set of terms and relationships describing
genomic entities [ELMT05]. For example, in the gene example mentioned
above, mRNA nodes can be connected to geme nodes to express that the
transcripts are parts (or subfeatures) of the gene (which has no parent
and hence is the top-level node). Nodes of the exon type are in turn
connected to mRNA nodes as the exons are constituents of the mRNA
feature (Fig. 1b). Due to the DAG structure, exons can also belong to
multiple transcripts. Gene nodes do not have a parent. Hence each gene
is represented as a connected component (CC, for short) in the annota-
tion graph. SO-compliant annotations are typically given as plain text in
the Generic Feature Format, Version 3 (GFF3), which basically describes
the annotation graph by tagging nodes with plain text attributes speci-
fying the part-of relations between parent and child nodes in the graph
(Fig. 1a).

We have identified several key requirements to be satisfied by a software
toolkit for annotation processing in order to make full use of the informa-
tion contained within such structured annotation files. Besides (obviously)
capturing the graph structure of annotation graphs using appropriate data



structures and access methods, the software should not restrict the user to
a specific subset of features (e.g. genes) but support all SO terms instead.
Due to the large size of annotations, a space efficient representation is
also important. This encompasses efficient handling of common sequen-
tial processing operations and non-redundant storage of repetitive data
such as sequence identifiers. Another requirement is a simple yet flexi-
ble and extensible application programming interface (API) for accessing
annotations. It should also support accessing the sequence, a genomic
feature refers to, a task complicated by the fact that the sequence is of-
ten stored separately from the annotation and not labeled with a unique
or standardized identifier. Finally, flexible and validating parsers are re-
quired for the most common annotation formats.

Generic software satisfying these desired features is scarce. Previous pop-
ular programming environments for bioinformatics show widely varying
levels of support for handling genomic annotations and none of them has
all the required features.

2 Implementation

The GenomeTools toolkit, which in contrast has all the required features,
uses an object-oriented approach to represent nodes in the annotation
graph as individual implementations of different classes with a common
genome node interface, modeled in accordance with the GFF3 specifica-
tion. Each node contains the genomic location (position, chromosome,
etc.) of the feature it represents and additional attributes, given as key-
value pairs.

The annotation graph can be partitioned into weakly connected compo-
nents based on the connectivity of its underlying undirected graph. Using
the GenomeTools API, CCs can be traversed using iterators and modified
by changing attributes or adding new child nodes. All actions performed
on nodes are implemented as node streams. Streams are active program
components which either create nodes, modify them or output them. The
basic approach is to sequentially pass a set of CCs (accessed through their
top-level nodes) through a stream of chains, possibly applying modifica-
tions before passing a CC to the successor stream. This approach makes
use of lazy evaluation and is very memory-efficient if input data is appro-
priately sorted.

As a software development kit, the GenomeTools are available as a shared



library which provides interface headers to implement custom streams,
allowing for interoperability between native GenomeTools streams and
custom ones. To access the GenomeTools functionality from scripting
languages, we have created bindings for the languages Java, Ruby, Python
and Lua using foreign function interfaces acting as a thin wrapper layer
around the library, allowing to write streams in other languages than C.

Input and output streams for various formats (GFF3, GVF, GTF, BED)
are available. We have taken special care to handle boundary cases which
may occur in GFF3 input to finally ensure that parsed graphs are al-
ways correct — even when the input does not fully comply to the GFF3
specification. For instance, GFF3 allows features with the same ID at-
tribute spanning multiple feature lines. Such a multi-feature implicitly
specifies parent nodes. For each part of a multi-feature, a separate node
in the feature DAG is introduced and tagged with a special multi-feature
flag. Furthermore, one of the nodes comprising the multi-feature is dis-
tinguished as a representative. Since no explicit top-level node is present
for these multi-feature nodes, we introduce an artificial pseudo-feature as
a new unique top-level feature node. All features comprising the multi-
feature become the children of a new pseudo-feature, to guarantee that
each CC has a top-level node.

The GenomeTools provide mechanisms for persistent storage of annota-
tion and indexed random access to features overlapping query regions.
These are useful to, for example, develop genome browsers or similar soft-
ware visualizing genome annotations. Finally, the GenomeTools library
provides techniques for an efficient sequence representation which can be
combined with the annotations [SK12]. It also provides a large variety
of useful sequence analysis functionality (index construction and access,
annotation visualization, and much more) as well as a collection of tools,
which make use of the library to solve real-world bioinformatics tasks.
These tools have been published separately!.

3 Results

We have applied the GenomeTools, BioPerl and SeqAn C++ toolkits to
parse a variety of annotation examples (gene annotations up to several GB
in size, SNV annotations, repeat annotations) into their own representa-

ISee http://genometools.org or the full GenomeTools paper [GSK13] for a com-
plete list of associated publications.



tion and measured the time and space requirement. The GenomeTools
library was consistently both the fastest and most memory-efficient of
the three toolkits, while also being the only one with the most complete
support for annotation graphs. For example, for processing the TAIR
A. thaliana annotation [RBBT03] the SeqAn (BioPerl) representation re-
quired up to 11 times (34 times) more space than the GenomeTools repre-
sentation. Regarding running times, the GenomeTools library was able to
create full annotation graphs from the input data in a matter of seconds,
while the competitors required up to several minutes.

4 Conclusion

We have developed a library for efficient handling of structured genomic
annotations which retains the expressiveness of the annotation graph ap-
proach, thus allowing a developer to implement new algorithms very close
to the intuitive theoretical concept. A simple concept of defining a pro-
cessing pipeline using the the stream and visitor patterns facilitates easy
interoperability between individual processing components. Tools built
using the GenomeTools library require less memory and are faster than
previous toolkits. We expect the GenomeTools software to continue being
a basis for new software tools for an ever increasing number of sequence
analysis tasks. The full paper [GSK13] was recently published in its pre-
liminary form.

References

[ELMT05] K. Eilbeck, S. Lewis, C. Mungall, M. Yandell, L. Stein, R. Durbin,
and M. Ashburner. The Sequence Ontology: A Tool for the Unifi-
cation of Genome Annotations. Genome Biology, 6(5):R44, 2005.

[GSK13] G. Gremme, S. Steinbiss, and S. Kurtz. GenomeTools: a compre-
hensive software library for efficient processing of structured genome
annotations. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, PrePrints, accepted on May 29, 2013.

[RBBT03] S.Y. Rhee, W. Beavis, T.Z. Berardini, G. Chen, D. Dixon, et al.
The Arabidopsis Information Resource (TAIR): a model organism
database providing a centralized, curated gateway to Arabidopsis
biology, research materials and community. Nucleic Acids Research,
31(1):224-228, 2003.

[SK12] S. Steinbiss and S. Kurtz. A New Efficient Data Structure for Storage
and Retrieval of Multiple Biosequences. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 9(2):345-357, 2012.



